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Abstract. We study a model in which a Hubbard Hamiltonian is coupled to the dispersive phonons in
a classical nonlinear lattice. Our calculations are restricted to the case where we have only two quasi-
particles of opposite spins, and we investigate the dynamics when the second quasi-particle is added to a
state corresponding to a minimal energy single quasi-particle state. Depending on the parameter values, we
find a number of interesting regimes. In many of these, discrete breathers (DBs) play a prominent role with
a localized lattice mode coupled to the quasiparticles. Simulations with a purely harmonic lattice show
much weaker localization effects. Our results support the possibility that DBs are important in HTSC.

PACS. 71.38.-k Polarons and electron-phonon interactions – 63.20.Pw Localized modes
– 63.20.Ry Anharmonic lattice modes

1 Introduction

In spite of the many studies [1–5] made since it was
first discovered [6], high temperature superconductivity
(HTSC) remains a challenge. The nature of the carriers
and the mechanism behind pair formation are still unclear.
According to many researchers, HTSC can be explained
by a purely electronic model, such as that described by
the t− J or the Hubbard Hamiltonians, for which charge
and/or spin interactions are paramount. This view is es-
sentially based on the absence of isotope effects seen in
some experiments [7] and the apparent d-symmetry of
the superconducting wavefunction. However, accumulat-
ing experimental evidence exists for electron-lattice effects
in high temperature superconductors [8–10], and theories
based on electron-phonon interactions have also been pro-
posed [2–5]. Here we follow the idea that both electronic
correlations and electron phonon interactions are impor-
tant [12] and study a model in which a Hubbard Hamil-
tonian is coupled to dispersive phonons. Our main aim is
to explore one extra ingredient, which has generally been
ignored until now, the importance of the anharmonic char-
acter of lattice vibrations. Whilst our ultimate aim is to
understand HTSC, here we propose a specific mechanism
for pair formation that involves the interaction of polarons
through a nonlinear lattice mode, which will have appli-
cations in other areas. We study the stability of such a
pair as a function of the electron-electron (or hole-hole)
interaction.
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2 The Hubbard-Davydov Hamiltonian

The Hamiltonian Ĥ we use has three parts:

Ĥ = Ĥqp + Ĥqp−ph +Hph (1)

where Ĥqp is the Hamiltonian for a quasiparticle with
spin 1

2 , Ĥqp−ph describes the interaction of the quasi-
particle with the lattice and Hph is the lattice (phonon)
Hamiltonian.

The Hamiltonian for the quasiparticle is the 1D Hub-
bard Hamiltonian:

Ĥqp = ε
∑

n,σ

(
ĉ†nσ ĉnσ

)
+ γ

∑

n

ĉ†n↑ĉn↑ĉ
†
n↓ĉn↓

−t
∑

n,σ

(
ĉ†nσ ĉn−1σ + ĉ†nσ ĉn+1σ

)
(2)

where the sums are over the sites n, going from 1 to N ,
(N is the total number of lattice sites) and σ refers to the
spin and can be up or down. ĉ†nσ is the creation operator
for a quasiparticle of spin σ at site n. ε is the self-energy
of the quasiparticle, t the transfer term for the quasi-
particle to move between neighbouring sites. We depart
from the usual notation in that the on-site quasiparticle-
quasiparticle coupling is here designated as γ (and not U)
to avoid confusion with the variables {un} used for lattice
displacement (see below). Both negative and positive val-
ues of γ will be considered, corresponding to the attractive
and repulsive Hubbard models, respectively.
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As in the Davydov model for energy transfer in
proteins [13], Ĥqp−ph, the Hamiltonian for the interaction
of the quasiparticle with the lattice includes the coupling
to acoustic (or Debye) phonons:

Ĥqp−ph = χ
∑

n,σ

[
(un+1 − un−1)

(
ĉ†nσ ĉnσ

)]
(3)

where χ is a parameter which describes the strength of
the quasiparticle-lattice interaction. Many previous publi-
cations have included electron-phonon interactions in the
framework of the model of Holstein [14], in which only
short-range interactions are are considered. As has been
pointed out elsewhere [15], when the electron screening is
poor, such as in cuprates, electron-phonon interactions are
long range, which can be described by acoustic phonons.

The phonon Hamiltonian is as follows:

Hph = Hco
ph +Hos

ph

Hco
ph =

κa2

72

N∑

n=1

[(
a

a+ un − un−1

)12

− 2
(

a

a+ un − un−1

)6
]

Hos
ph = κ′

N∑

n=1

(
1
2
u2

n +
1
4
u4

n

)
+

1
2M

N∑

n=1

p2
n (4)

where un is the displacement from equilibrium position of
site n, pn is the momentum of site n, a is the equilibrium
distance between sites, κ is the elasticity of the nonlinear
lattice and κ′ is a similar constant for the on-site potential.
Here, the coupling interactions between sites are described
by a Lennard-Jones potential, Hco

ph, a potential commonly
used to describe interactions between atoms. In a high
temperature cuprate, this potential describes the interac-
tions of the copper and oxygen atoms in one Cu-O layer.
The on-site potential Hos

ph is as used in many breather
studies [16]. It can be considered to represent the effect,
in a mean field approach, of the rest of the crystal on the
one dimensional chain whose states are studied explicitly.
In a cuprate, this models the effect of the neighbouring
layers on the Cu-O layer.

Our Hamiltonian (1–4) includes two sources of nonlin-
ear effects. The first comes from the intrinsic nonlinearity
of the Lennard-Jones potential, Hco

ph and the on-site po-
tential, Hos

ph. The second source of nonlinearity is extrinsic
and comes from the interaction of the quasiparticle with
the lattice (cf. Eq. (3)). The former is the source of non-
linearity in the studies of discrete breathers [16] and the
latter is the cause of localization in polaron theory.

We adopt a mixed quantum-classical approach in
which the lattice is treated classically, while the quasipar-
ticle is treated quantum mechanically. Accordingly, the
displacements un and momenta pn are real variables. The
quasiparticle variables are operators, a distinction which is
marked by the hats above the operators. The importance
of quantum effects of the lattice can be assessed by consid-
ering the full quantum model at finite temperature, which
has already been done for the Davydov Hamiltonian. It
was found that, at 0.7 K, the lattice displacement cor-
related with the position of the quantum particle in ex-
act semiclassical Monte Carlo simulations differed by 15%

from the corresponding variable in exact simulations in
the fully quantum system. At 11.2 K, the two approxima-
tions lead to virtually the same value [17]. We would like
to emphasize that the approximation we consider here is
not an adiabatic approximation. In an adiabatic approxi-
mation the kinetic energy of the phonons is neglected with
respect to the kinetic energy of the quantum particle. We
do not do that here, as our dynamical equations, equa-
tions (6) and (7) below, include the time derivative of the
momenta of the lattice sites. What we do is to consider
that the dynamics of the lattice can be treated classically.
Both the semiclassical (or quantum/classical, as we prefer
to call it to differentiate from other use in the literature)
approach we apply here and the adiabatic approximation
lead to similar results when we consider the ground states
of the system (because the corresponding solutions have
zero kinetic energy), but they are different when we deal
with dynamics, as we do in this work.

The arguments above suggest that our mixed quan-
tum/classical approach results may give a good approxi-
mation to the full quantum solution, but we stress that our
results are only strictly valid in this approximation, and
require confirmation by a full quantum simulation. In ad-
dition, the need for a full quantum treatment comes from
comparison with experimental results, since isotopic ef-
fects can only be described in a fully quantum framework.
Our main aim here is to explore the importance of anhar-
monicity in the lattice for the dynamics of paired states,
something which is much more complicated to do within
a fully quantum formalism. Thus, as a first approxima-
tion, we restrict ourselves to the mixed quantum-classical
regime and study the behaviour of a pair of quasiparticles,
coupled to a nonlinear lattice.

With these assumptions, the exact two quasiparticle
wavefunction for the Hamiltonian (1–4) is:

|ψ(t)〉 =
∑

n,m=1,N

φnm({un}, {pn}, t) ĉ†n↑ ĉ†m↓|0〉 (5)

where φnm is the probability amplitude for a quasipar-
ticle with spin up to be at site n and a quasiparticle
with spin down to be at site m. The probability ampli-
tude is dependent on the lattice displacements and mo-
menta in a way that is not specified a priori and is de-
termined by the equations of motion. Similarly to other
systems [18], the equations of motion for probability am-
plitudes φnm are derived by inserting the wavefunction (5)
in the Schrödinger equation for the Hamiltonian (2–4),
and the equations for the displacements and momenta
are derived from the Hamilton equations for the classical
functional E2 = 〈ψ|Ĥ |ψ〉. They are:

ı�
dφjl

dt
= −t (φj−1l + φj+1l + φjl−1 + φjl+1) + γφjlδjl

+ χ (uj+1 − uj−1 + ul+1 − ul−1)φjl (6)

dpj

dt
= −∂Hph

∂uj

− χ
(
|ϕ↑

j−1|2 − |ϕ↑
j+1|2 + |ϕ↓

j−1|2 − |ϕ↓
j+1|2

)
(7)
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where |ϕ↑
j |2, the probability for the quasiparticle with

spin up to be in site j and |ϕ↓
j |2, the probability for the

quasiparticle with spin down to be in the same site. These
are given by:

|ϕ↑
j |2 = 〈ψ|ĉ†j↑ĉj↑|ψ〉 =

N∑

l=1

|φjl|2,

|ϕ↓
j |2 = 〈ψ|ĉ†j↓ĉj↓|ψ〉 =

N∑

l=1

|φlj |2.

3 Dynamical states

We consider the case in which the quasiparticle density is
low and the starting point is that of an isolated quasipar-
ticle interacting with the lattice. We wish to find if the
addition of a second quasiparticle with opposite spin to
that state can lead to pairing of the two quasiparticles,
and how the relative stability of the paired state depends
on the quasiparticle-quasiparticle interaction γ.

We start from the state of a single quasiparticle. The
wavefunction is

|ψ1
σ〉 =

∑

n

φ1
nĉ

†
n|σ|0〉. (8)

Minimum energy states for this one quasiparticle can be
found by numerical minimization of the energy functional
E1 = 〈ψ1|Ĥ |ψ1〉 with respect to the probability amplitude
for a single quasiparticle in site n, φ1

n, and to the displace-
ments un [19]. Two kinds of minimum energy states are
found. For sufficiently large quasiparticle-lattice interac-
tion χ, the quasiparticle states are localized and there is
an associated lattice distortion. We call this the single par-
ticle polaron, or simply polaron. Below a threshold value
for χ, the states are delocalized, as in the usual Bloch
states, and the lattice is undistorted. We have considered
a value of χ and other parameters such that the initial one
quasiparticle polaron state is neither too weak nor too sta-
ble when compared with delocalized, Bloch states for the
same values. While it is important to find the behaviour
of the two quasiparticle states considered here for differ-
ent values of the parameters, our choice ensures that the
results here are not the consequence of extreme values.

The dynamical states we study are the perturbations of
the single polaron state, induced by the presence of a sec-
ond quasiparticle with opposite spin. Because the number
of variables φnm that characterize the wavefunction (5)
increases with the square of the lattice size, in order to be
able to integrate the equations of motion for a sufficiently
long time, the size of the lattice was kept relatively short,
i.e. the number of sites is N = 20. The aim is to investigate
the influence of the strength and sign of the quasiparticle-
quasiparticle interaction γ on the dynamics of the paired
quasiparticle states.

The parameters of the simulations in the figures are
the same, except for the quasiparticle-quasiparticle inter-
action γ. In Figure 1 we set γ/t = −10 in an attractive
Hubbard model. The addition of a second quasiparticle
leads to a localized state for the pair, with a very slight

Fig. 1. Time dependence for (a) the probability for one quasi-
particle to be in site n, (n = 1 · · ·N , N = 20), (b) the lattice
displacement and (c) the momentum of site n. Time is in pi-
coseconds. The parameters are t = 10 × 10−22 J, χ = 100 pN,
κ = 1 N/m, κ′ = 2κ, a = 4.5 Å and γ = −100 × 10−22 J.

peak oscillation, that is hardly visible in the figure. (The
probability for the second quasiparticle is the same as that
shown and is not displayed.) The lattice, however, sets
into a breather-like oscillation [16], i.e., a localized excita-
tion with an internal oscillation. Indeed, at the site of the
initial lattice distortion, oscillations are clearly visible in
the lattice displacements and momenta. A striking obser-
vation is that the amount of radiation generated is very
small, and most of the energy of the lattice is associated
with the breather. Figure 2, which displays another 6 ps
period of the dynamics at a later time, demonstrates the
stability of this solution.

A Hubbard Hamiltonian with a much weaker attrac-
tion, corresponding to a ratio of γ/t = −0.5, is considered
in Figure 3, where the last 6 picoseconds of a 42 picosec-
ond simulation are displayed. A modulation of the peak of
the probability distribution is now clearly seen, which has
the same frequency as the main modulation of the lattice
breather. The modulation of the quasiparticle probability
is associated with a periodic change of shape in which a
lower peak with a slight tail appears. Even at this com-
paratively much weaker interaction, the amount of radia-
tion is very small and most of the lattice energy is in the
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Fig. 2. Same as Figure 1, at a later time.

breather. The frequency of the main modulation of the
breather is as for γ/t = −10.

In Figure 4 a repulsive Hubbard Hamiltonian is con-
sidered, with γ/t = +0.5. The modulations and the
associated tails of the probability distribution for the
quasiparticle are now more pronounced, but their main
frequency is unchanged. Although there is a slight increase
in the radiation in the lattice, the stability of the breather
and of the quasiparticle solution is apparent.

In Figure 5 the repulsive interaction is increased to
γ/t = +1. The modulations in the probability distribution
for the quasiparticles lead to greater periodic changes of
shape, still with the same frequency as for the other values
of γ. The radiation in the lattice is now more visible, but
the breather remains stable.

In Figures 6 and 7, a large repulsive value, correspond-
ing to γ/t = 5 is taken. This leads to a change in the
probability distribution for the quasiparticles, from a sin-
gle site peak into a two site peak, with periodic oscillations
which make one probability at one site larger than the
other. The lattice variables show that, concurrently with
the appearance of the breather, a considerable amount of
radiation is generated. Also noticeable is the fact that the
frequency of the modulations has changed. Figure 7 shows
that the new quasiparticle probability distribution is sta-
ble, as well as the lattice breather, even if the noise which
results from successive passes of the radiation through the
periodic boundaries, constitutes a significant part of the
lattice energy.

Fig. 3. Same as Figure 1, but with γ = −5 × 10−22 J.

Fig. 4. Same as Figure 1, but with γ = +5 × 10−22 J.
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Fig. 5. Same as Figure 1, but with γ = +10 × 10−22 J.

In Figures 8 and 9, a repulsive interaction correspond-
ing to γ/t = 10 is used. Figure 8 shows that a drastic
transformation takes place in which the initial distribu-
tion changes into a two peak distribution. One of the peaks
is located where the initial lattice distortion was and the
second peak is as far away from it as it can be in this
lattice. Also, while the peak that is located at the orig-
inal lattice distortion site remains unmodulated in time,
as well as its associated lattice distortion, the second peak
oscillates with approximately the same frequency as that
in Figures 6 and 7. The momenta in Figure 8 show clearly
that the second peak has an associated lattice breather,
while the first peak is associated with a distortion that is
essentially static. After some time, because of the repeated
reflection of the radiation from the boundaries, this pic-
ture is not so clear. Both peaks show oscillations in the
displacements and the momenta of the lattice are rather
noisy. However, Figure 9 does illustrate the stability of the
two peak solution, even in the presence of such relatively
large amount of noise.

4 Dynamical states in the fully harmonic
approximation

The early theory of pair formation via interaction with
phonons assumed that the lattice motion was harmonic. It

Fig. 6. Same as Figure 1, but with γ = +50 × 10−22 J.

Fig. 7. Same as Figure 6, but at a later time.
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Fig. 8. Same as Figure 1, but with γ = +100 × 10−22 J.

is interesting to see how the dynamics of the two electron
states would be in this case, and this section is devoted to
that question. The first two terms (2), (3) in the Hamil-
tonian we consider in this section are the same as before,
but now the phonon Hamiltonian is given by:

Hharm
ph = Hco−harm

ph +Hos−harm
ph (9)

Hco−harm
ph =

1
2
κ

N∑

n=1

(un − un−1)
2
,

Hos−harm
ph = κ′

N∑

n=1

(
1
2
u2

n

)
+

1
2M

N∑

n=1

p2
n.

The phonon Hamiltonian (9) can be obtained from (4)
by considering the limit of small displacements, in which
only the linear terms remain. In this case, the only
nonlinear term left for the total Hamiltonian is that
which describes the quasiparticle-lattice interaction. It
should be pointed out that, if we disregard the correla-
tion term in (2), the equations of motion for this system
are those studied by a number of authors [14,20] for a
single single polaron, and for any number of polarons by
Alexandrov [21].

Figure 10 shows that when the effective interaction is
such that γ/t = −10, the addition of an extra electron
to the minimum energy single polaron leads to a state in

Fig. 9. Same as Figure 6, but at a later time.

which both electrons are in the same site with a strong
lattice deformation of breather type associated with their
presence. The time evolution of the momenta, however,
shows that there is no breather formation, only phonons
which travel along the lattice. Because of the periodic
boundary conditions, these phonons eventually come back
and after they have crossed each other many times the
lattice becomes very noisy. The lattice deformation associ-
ated with the two electrons oscillates periodically because
of the interference of these phonons, but does not move.
Also, the state of the two electrons remains localized on
one site all the time.

Similar dynamics takes place for γ/t = −0.5, except
that very slight oscillations in the probability distribution
for the electron states also takes place (not shown).

When the electron-electron interaction is repulsive and
such that γ/t = +5, the phonon emission leads to fluc-
tuations in the electron probability distribution that are
clearly visible in Figure 11. The dynamics is similar to that
of Figure 10, with phonons propagating along the lattice
and causing oscillations in the otherwise constant distor-
tion induced by the two electrons. Again, the momenta
show that there is no breather formation and all the dy-
namics of the lattice is due to the phonon propagation and
interference.

For a repulsive interaction for which γ/t = +10, the
two electrons split up and the probability distribution
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Fig. 10. Same as Figure 1, but with γ = −100 × 10−22 J and
for the harmonic lattice (9).

shows two peaks, both of which have an associated lat-
tice deformation with the breather profile (see Fig. 12).
Phonons are generated from each of these locations and
their interference eventually leads to a noisy lattice. The
two peaks in the probability distribution for the electrons
oscillate in a less regular fashion than in the anharmonic
lattice, but remain stable throughout the simulation. It
should be noticed that for this harmonic approxima-
tion also, the lattice displacements induced by the elec-
trons/holes are not small. Hence, an accurate representa-
tion of the dynamics should include the nonlinear terms
in the lattice Hamiltonian, as was done in the previous
section.

5 Discussion

Our aim was to investigate the relative stability of a
correlated pair of quantum quasiparticles with opposite
spins with respect to their uncorrelated states. The start-
ing point was thus the state of a single quasiparticle po-
laron and we studied the dynamic states which arise when
a second quasiparticle is added to the first state. The
Hamiltonian used includes several physical ingredients.
On the one hand, it contains two sources of nonlinearity,
one intrinsic to the lattice and another which arises from
the quasiparticle lattice interaction. Such nonlinear lat-
tices have been shown to possess generic solutions known

Fig. 11. Same as Figure 1, but with γ = +50 × 10−22 J and
for the harmonic lattice (9).

Fig. 12. Same as Figure 1, but with γ = +100 × 10−22 J and
for the harmonic lattice (9).
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as discrete breathers (DBs) [16]. The study of systems
in which nonlinear lattices are coupled to one quantum
quasiparticle, on the other hand, is just beginning [22,23].

To our knowledge, this is the first time that the cou-
pling of two quantum quasiparticles to a nonlinear lat-
tice has been considered. Indeed, a second ingredient is
the inclusion of quasiparticle-quasiparticle interactions, in
addition to the quasiparticle-lattice interactions found in
the polaron model. The quasiparticle-quasiparticle inter-
actions can represent Coulomb interactions, and/or spin-
spin interactions, and be either attractive or repulsive. The
dynamical simulations indicate that for these extended
systems, DBs are generic solutions also and can be gen-
erated by the presence of a second quasiparticle. These
lattice breathers can in turn stabilise localized, paired,
quasiparticle states, for a large range of γ values. Windows
of γ were found for which similar solutions are obtained.
Thus, for a ratio of γ/t between −10 and +1 (Figs. 1–5),
DBs are found in the lattice and in the quasiparticle, with
the same main modulation frequencies. For larger values
of γ/t, two different solutions were found (see Figs. 6–9).
In one solution the quasiparticles distribution is split into
equal values in two neighbouring sites and in the second
a two peak distribution, with the peaks as far apart as
possible in the lattice used, is observed.

This Hamiltonian includes the two main physical
causes for quasiparticle pairing that have been considered
in HTSC and allows for interpolation between them, by
varying the strength of the relevant parameters. According
to our results, a greater importance of quasiparticle-lattice
interactions in pair formation should arise in systems for
which the dynamics of the lattice is fast enough compared
to the quasiparticle dynamics, so that the lattice relaxes
when the two quasiparticles meet. Conversely, a corre-
sponding greater importance of quasiparticle-quasiparticle
interactions should be associated with systems in which
the lattice dynamics is much slower than the quasiparticle
dynamics.

An implicit assumption in this study is that the non-
linear character of the lattice plays an important role in
HTSC. Although the lattice distortions are weak in con-
ventional superconductors, and thus the lattice dynamics
can be approximately described by a linear system, we
argue that in HTSC these distortions are such that the
lattice enters a nonlinear regime. This may be why the
sound velocity decreases by a few parts per million in con-
ventional superconductors, whereas in a high Tc material
there is an increase which is two or three orders of magni-
tude larger than in the former case. Our simulations with
the harmonic lattice show that the percentage of energy
transferred to travelling phonons is much larger than for
the anharmonic lattice.

The breather-like solutions found in the dynamical
simulations are a signature of the nonlinear dynamics of
the lattice. The possibility that breathers are associated
with HTSC has been suggested elsewhere [24,25]. Our
study indicates that DBs are generic excitations in sys-
tems governed by the Hamiltonian used here. Moreover,
within a certain range of the parameters, the states in

which two quasiparticles are paired and coupled to a DB
are energetically more favourable than those of uncorre-
lated quasiparticles. Hence, this study gives weight to the
possibility that DBs are important in HTSC.
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